Appendix E
The Theory of Choice

In this appendix, we briefly review the theory of consumer choice. It is provided
both as a background and reference on the core concepts of choice theory.

The most widely used theories of choice assume customers are rational decision
makers who intelligently alter when, what, and how much to purchase to achieve the
best possible outcome for themselves. This is a quite plausible assumption. Moreover,
an important consequence of this rationality assumption is that customer behavior
can be “predicted” by treating each customer as an agent that optimizes over possible
choices and outcomes. Optimization theory can then be used to model their behavior.
Indeed, for these reasons rational-customer models are the basis of most economic
theory.

Yet despite the theoretical and intuitive appeal of the rationality assumption, in-
stances of deviations from rational behavior are observed in experiments and in real
life. Alternative theories of choice have emerged to explain such behavior. These
models assume customers are not perfectly rational—that there are limits to how
cleverly they behave or that they exhibit irrational biases in their choice decisions.
These so-called behavioral theories are surveyed below as well.

Choice and Preference Relations

Given two alternatives, a choice corresponds to an expression of preference for one
alternative over another. Here, “alternatives” may refer to different products, different
quantities of the same product, bundles of different products or various uncertain
outcomes (such as buying a house at the asking price versus waiting and bidding
in an auction against other buyers). Similarly, given n alternatives, choice can be
defined in terms of the preferences expressed for all pairwise comparisons between
the n alternatives.

The mathematical construct that formalizes this notion of choice and preference is
a preference relation. Customers are assumed to have a set of binary preferences over
alternatives in a set X. That is, given any two alternatives « and y in X, customers
can rank them and clearly say they prefer one over the other. This is represented by
the notation = > y. A customer strictly prefers z to y, denoted = > y, if he prefers
z to y, but does not prefer y to = (that is, he is not indifferent between the two
alternatives).
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Consider a complete set of all such pairwise binary preferences between alternatives
in X. The following two properties might be reasonably assumed about “rational”
preferences:

& Asymmetry If z is strictly preferred to y, then y is not strictly preferred to x.

m Negative transitivity If = is not strictly preferred toy and y is not strictly
preferred to z, then z is not strictly preferred to z.

Asymmetry and negative transitivity can be considered as “minimal consistency prop-
erties” for an expression of preference among a set of alternatives. A binary relation
> on a set X is called a preference relation, if it is asymmetric and negatively tran-
sitive. While asymmetry is quite plausible, negative transitivity is not a completely
innocuous assumption, as illustrated by the following example:

Example E.1 Suppose you are choosing among jobs in three different cities. Sup-
pose the two factors that matter most to you are income and the climate. The job
in city z has a high salary of $100,000, and the climate is average. The job in city y
offers a salary of only $50,000, but the climate is terrific. The job in city z offers a
moderate salary of $70,000 and the climate is poor. You might not strictly prefer =
to y because although = offers a great salary, y offers a great climate. Likewise, you
might not strictly prefer y to z because again, while y offers a great climate, z offers
a higher salarv. However, you may very well prefer = to z, since « has both a higher
salary and a better climate than does z. These preferences would violate negative
transitivity.

Despite such shortcomings, the properties of asymmetry and negative transitivity
form the classical basis for modeling customer preferences. The following are some
examples of preference relations:

Example E.2 (LEXICOGRAPHIC MODEL) This model of preferences, due to Tver-
sky [521], assumes customers rank order various attributes of a product and then
evaluate them using a lexicographic rule. For example, a tennis racquet comes in
three models A, B, and C with the following features:

Product Wide Body? Graphite? Black?
A Yes No Yes

B Yes Yes No

C No Yes Yes

The customer’s decision rule is to rank all attributes from most important to least
important and then eliminate alternatives which do not possess the most important
attributes. If more than one alternative remains, the next most important attribute
is chosen as a criterion for elimination of alternatives, and so on.

For example, a customer may care most about whether a racquet has a wide
body, then whether it is graphite, and lastly whether it is black. He would then
prefer racquets with a wide body to all others without a wide body (regardless of the
other attributes). Among all those with wide bodies, he would then select those that
have graphite construction; among the remaining, he may select only the ones that
are black, and so on. So for our three products above, this customer would prefer
product in the order B, A, C. One can verify that the lexicographic model generates
a preference relation among the alternatives.
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Example E.3 (ADDRESS MODEL) Address models link attributes to preference with-
out imposing the restriction that some attributes strictly dominate others as in the
lexicographic model. Suppose we have n alternatives and each alternative has m at-
tributes that take on real values. Alternatives can then be represented as m points,
21y...y2n, in ™, which is called attribute space. For example, in a travel context
attributes may include departure time, arrival time, and price.

Each customer has an ideal point (“address”) y € ®™, reflecting his most preferred
combination of attributes (such as an ideal departure time, arrival time, and price).
A customer is then assumed to prefer the product closest to his ideal point in at-
tribute space, where distance is defined by a metric p on ™ x R™ (such as Euclidean
distance). These distances define a preference relation, in which 2; > 2; if and only
if p(2i,¥) < p(z5,y); that is, if z; is “closer” to the ideal point y of the customer.

Utility Functions

Preference relations are intimately related to the existence of utility functions. Indeed,
we have the following theorem (See Kreps [313] for a proof.):

THEOREM E.3 If X is a finite set, a binary relation > is a preference relation if
and only if there exists a function u: X = R (called a utility function), such that

z>y iff u(z)>u(y)

Intuitively, this theorem follows because if a consumer has a preference relation,
then all products can be ranked (totally ordered) by his preferences; a utility function
then simply assigns a numerical value corresponding to this ranking. Intuitively, one
can think of utility as a measure of “value,” though in a strict sense its numerical
value need not correspond to any such tangible measure. Theorem E.3 applies to
continuous sets X (such as travel times or continuous amounts of money) as well under
mild regularity conditions, in which case the utility function u(-) is then continuous.
The following examples illustrate the construct of utility:

Example E4 A utility function corresponding to the lexicographic model of Ex-
ample E.2 can be constructed as follows: Suppose there are n alternatives with m
attributes each. Let the attributes be ordered so that 1 represents the highest-valued
attribute and m the lowest. Let ax(z),k = 1,...,m, be binary digits representing
whether alternative z, possesses attribute k. Then a utility satisfying Theorem E.3
is the binary number,

u(z) = @z1022 -+ Qzm.

Maximizing over these utilities leads to the same customer decisions as the lexico-
graphic model.

Example E.5 Consider the address model of Example E.3. Again, Theorem E.3

guarantees that an equivalent utility maximization model exits that generates the
same choices. In this case, it is easy to see that for customer y the continuous utilities

w(2) = ¢ - p(z,9),

where ¢ is an arbitrary constant, produce the same decision rule as the address model.
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Utility for Money and Consumer Budgets

It is often convenient to narrow the choice of utilities further and express utility in
monetary terms. To do so, one can pose the question: Given the customer’s preference
for n goods (purchase alternatives), a vector of market prices p = (p1,...,pn) for these
goods, and a level of monetary wealth w, how would a customer “spend” his wealth?
To make matters simpler, we assume quantities x; of each good i are continuous
and our customer has a continuous utility function u{x). Let x = (z1,...,zs). The
consumer budget problem can then be formulated as!

v(w) = max u(x) (E.1)
5.t pTx <w
x>0

In other words, customers purchase quantities x; of each good i to maximize their
total utility subject to the constraint that they can spend at most their total wealth
w. The optimal solution gives the customer’s utility for wealth (or money) v(w); the
optimal solution, x*, gives the customer’s demand for each of the n goods.

Utility for money is increasing in w since one can always “not spend” the wealth w.
Also, since the utility for money depends on the prices of goods, if prices change, both
the demand z* and the utility for money may change. The marginal utility of money
u'(w) also depends on the customer’s wealth w. The utility for money v(w) is concave
if u(zx) is concave,? in which case the consumer has decreasing marginal utility for
money. Intuitively, this is because at low levels of wealth only highly essential goods
are purchased (food, water, clothing, shelter)—all of which have very high utility
to most of us. As wealth rises, each marginal dollar is allocated to somewhat less
important purchases.

If the function u(x) is continuously differentiable and we let 7 denote the optimal
Lagrange multiplier on the budget constraint in (E.1), then the marginal value of
money is

v'(w) = .

We can use this fact to redefine utilities in monetary terms. Indeed, since our cus-
tomer’s monetary utility for an additional dollar should be one dollar, we should have
v'(w) = m = 1 if utilities are measured in dollars. This change of units can be ac-
complished by rescaling the customer’s utility functions by v'(w) = 7 to form the
modified utilities

(x) = M (E.2)

™

1Dynamic versions of this consumer budget problem can also be formulated by allowing
customers to purchase over multiple periods and invest money at a given interest rate for
future consumption. Other variations introduce wages and a utility for leisure time and allow
customers to increase their monetary wealth by varying their time allocated to labor, and so
on.

This follows easily from the convexity of the budget constraint and the fact that (E.1) is a
maximization problem. Concavity of the utility function corresponds to having decreasing
marginal utility of consumption for goods, which is a natural assumption.
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Reservation Prices

A reservation price is the monetary amount a consumer is willing to give up to acquire
an extra marginal unit of some good. Reservation prices are also referred to as the
customer’s willingness to pay. Formally, if * denotes the optimal solution to (E.1),
the reservation price, denoted i, for an additional unit of good i is given by

Ai(x™)
6:::.- !

Vi =

(E.3)

where @(x*) is the monetary utility (E.2). The first-order conditions of the budget
problem imply —8(;2 = p; since %' (w) = = = 1 when utilities are measured in dollars.
Combining this with (E.3) implies that v; = p;. Thus, a customer’s reservation price
for goods that are currently consumed is simply the current market price. The reason
for this equivalence, intuitively, is that if our customer valued another unit of good %
at strictly more than its market price, then he would be able to increase his utility
by reducing consumption of other goods and increasing his consumption of good <.
Since our customer is assumed to be maximizing utility, this cannot occur.

On the other hand, for goods % that are not being consumed, so 2} = 0, the first-
order conditions to (E.1) imply —(—2 < pi, or equivalently v; < p;. In other words,
by (E.3) the customer’s reservatlon prlce for the first unit of good 1 is strictly less than
its current market price. Moreover, the customer would change only his allocation
and buy good 1 if its price p; dropped below his reservation price v;.

This formal analysis of reservation price is arguably less important in practice than
the informal concept—namely, that the reservation price is the maximum amount a
customer is willing to pay for an additional unit of good . And to entice a customer
to buy good i, the price must drop below his reservation price. Still, the analysis
highlights the important fact that reservation prices are not “absolute” quantities.
Like utility for money, they depend on customers’ preferences, wealth, their current
consumption levels, and the prices of other goods the customers may buy; change one
of these factors, and customers’ reservation price may change.

Lotteries and Stochastic Outcomes

Many choices in life involve uncertain outcomes, such as buying insurance, making
investments or eating at a new restaurant. How do customers respond to these sorts
of uncertainties? The theory of choice under uncertainty is a deep and extensive topic.
Here, we outline the basic ideas and highlight the main concepts.

Consider again a discrete, finite set of n alternatives, X = {z1,...,za}. Let P
be the class of all probability distributions P(:) defined on X. That is, P € P is a
function satisfying 3, P(x:) = 1 and P(xi) 2 0 for s = 1,...,n. One can think of
each P as a “lottery,” the outcome of which is that the customer is left with one of
the alternatives z; according to the distribution P.

What can we say about the customer’s preference for these various lotteries?
Specifically, when can we say that for any two lotteries P1 and Pz, customers “prefer”
one over the other (denoted by Py >~ P2)?

To answer this question we again need to make some assumptions on customer
preferences. First, we will assume there exists a preference relation > on the n
different outcomes z; as before. Second, for any two lotteries P; and Pz, consider a
compound lottery parameterized by a as follows:
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STEP 1: A coin is flipped with probability of heads equal to ¢.

STEP 2: If the coin comes up heads, the customer enters lottery P;; otherwise, the
customer enters lottery Pz.

Denote this compound lottery by aPy + (1 — @)P2. Note this compound lottery
is also contained in the set P (i.e., P is a convex set). We then require the following
consistency properties on a customers preference for lotteries:

= Substitution axiom Forall P, P;, and Ps in P and all & € (0,1}, if P, » P2,
then aPy + (1 —a)Ps = aPe + (1 — a)Ps.

m  Continuity axiom For all P, P, and P3 in P with P, > P2 > P, there exist
values a € (0,1) and 8 € (0,1) such that Py +(1—a)Ps > Py = BP +(1-8)Ps.

Roughly, the first axiom says that if one gamble produces strictly preferred out-
comes for any realization of uncertainty, then the customer should strictly prefer it.
The second axiom says that if a customer strictly prefers one gamble to another, then
he should be willing to accept a sufficiently small risk of an even worse outcome to
take the preferred gamble. Both are reasonable assumptions.

Under these two axioms, there exist utilities on outcomes such that the expected
utility of each lottery defines a customer’s preference relation among lotteries. Specif-
ically,

THEOREM E.4 A preference relation on the lotteries P exists that satisfies the
substitution and continuity axioms if and only if there exists a utility function u(-)
such that Py > Py if and only if

n

Z u(z:) Py (z:) > Z u(zi)Pa(x:).

i=1

That is, if and only if the expected utility from lottery Py exceeds the expected utility
of lottery Pa. In addition, any two utility functions w and u' satisfying the above must
be affine transformations of each other; that is,

u(z) = cu'(x) + d,
for some real ¢ >0 and d.

This result is due to von Neumann and Morgenstern [541] and is known as the von
Neumann-Morgenstern expected-utility theory. Essentially, it allows us to extend util-
ity as a model of customer preference to the case of uncertain outcomes, with expected
utility replacing deterministic utility as the criterion for customer decision making.
Since the original deterministic outcomes (e.g., outcome z; occurs with probability
P(z;) = 1) are included in P, the von Neumann-Morgenstern expected utilities also
help us “narrow down” the list of possible utility functions for the customer.

Risk Preferences

An important special case of expected-utility theory is when outcomes represent dif-
ferent monetary amounts, so alternatives correspond to different levels of wealth and
lotteries correspond to different gambles on a customer’s ending wealth level. For
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this discussion, we assume the wealth levels are continuous and that the customer has
preferences for wealth that satisfy the conditions of Theorem E.4. Also, assume the
lotteries are now continuous distributions F on R.

Consider now any given lottery F (a distribution on possible wealth outcomes)
and pr denote the mean of the distribution. A customer is said to have risk-averse
preferences if he prefers the certain wealth up to the lottery F itself for all possible
lotteries F. That is, the customer always prefers the certainty of receiving the ex-
pected wealth rather than a gamble with the same mean. The customer is said to
have risk-seeking preferences if he prefers the gamble F to the certain outcome yp for
all F. Finally, he has risk-neutral preferences if he is indifferent between the lottery
F and the certain reward up.4 We then have the following result:

THEOREM E.5 A customer’s preference > for lotteries exhibits risk-aversion (risk-
seeking) behavior if and only if their von Neumann-Morgenstern utility function u(w)
is concave (convex). Their preference is risk-neutral if and only if u(w) is affine.

Thus, risk preferences are linked directly to concavity or convexity of the customer’s
utility function. The reason is quite intuitive; with a concave utility function for
wealth, a customer gains less utility from a given increase in wealth than he loses in
utility from the same decrease in wealth. Hence, the upside gains produced by the
volatility in outcomes do not offset the downside losses, and customers therefore prefer
the certain average to the uncertain outcomes of the lottery. Since most customers
have a decreasing marginal utility for wealth, risk aversion is a good assumption in
modeling customer behavior.

Still, the concept of risk aversion has to be addressed with care in operational
modeling. While it is true that most customers are risk-averse when it comes to
large swings in their wealth, often the gambles we face as consumers have a relatively
small range of possible outcomes relative to our wealth. For example, a customer
may face a price risk in buying a CD or book online. However, the differences in
prices for such items are extremely small compared to his total wealth. In such cases,
the utility function is “almost linear” in the range of outcomes affecting the decision
and the customer tends to behave “as if” he were risk-neutral.’ Similar statements
apply to firms. Generally, they are risk-averse too, but for decisions and gambles
that involve “small” outcomes relative to their total wealth and income, they tend to
be approximately risk-neutral. Hence, risk-neutrality is a reasonable assumption in
operational models and, indeed, is the standard assumption in RM practice.

>The extension of Theorem E.4 to the continuous case requires some additional technical
conditions that are beyond the scope of this chapter. See Kreps [313].

Note that a customer’s preferences may not fall into any of these three categories. For exam-
ple, many consumers take out fire insurance, preferring a certain loss in premium payments
every year to the gamble between making no payments but potentially loosing their house,
yet simultaneously play their local state lottery, which has an expected loss but provides a
small probability of a large wealth pay-off. Such behavior violates a strict risk preference.
Formally, one can see this by taking a Taylor series approximation of the utility function
about the customer’s current wealth to; the first-order approximation is affine, corresponding
to risk-neutrality.
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Information Asymmetry

Another important fact related to customer choice is that normally much of a cus-
tomer’s information is private, information that only the customer “knows” and in-
formation that cannot be directly observed by a firm. Normally, both a customer’s
preferences and wealth are private information. One can perhaps gain clues to a
customer’s preference by observing their purchase behavior over time (their so-called
revealed preferences), and partial information on their wealth may be garnered from
surveys and transactional data. But in general, much of the data affecting customers’
choice behavior remains hidden.

This “information asymmetry” between customers and firms has implications for
pricing and RM as discussed in detail in Chapters 6 and 8. To give a quick sense of the
effect, consider how customers react to a posted price. Due to information asymmetry,
the selling firm rarely knows a customer’s true reservation price for their product.
If they did, they could potentially offer the customer a price only marginally less
than their reservation price and maximize the revenue obtained from each customer.
Instead, most firms have to guess at each customer’s reservation price. As a result,
sometimes they price too high, and the customer does not purchase at all; other times
they price too low, and although the customer may decide to purchase, they lose an
opportunity for a revenue gain as the customer would have been willing to pay more.
In this way, the private information of customers often allows them to retain some
surplus, even from a monopoly seller.

Deviations from Rational Behavior

While rational behavior is the standard assumption underlying most of the theory
and practice of RM, it is far from being completely accepted as a model of how an
actual customer behaves. Indeed, much of the recent work in economics and customer
behavior has centered on explaining observed, systematic deviations from rationality
on the part of customers.

The seminal work in this area is that of Kahneman and Tversky [278, 277], who
showed that customers often exhibit consistent biases when faced with simple choices
in an experimental setting. Their key insight is that most individuals tend to evaluate
choice in terms of losses and gains from their status quo wealth, rather than evaluating
choices in terms of their terminal wealth as in classical utility theory. People also show
a tendency toward “loss aversion” rather than risk aversion, and they have a strong
preference for certainty of outcomes when evaluating choices. Finally, how gains and
losses are expressed matter as well.

They showed that how questions of choice are “framed” have a large impact on
customer choice. When choices are framed in terms of gains versus losses, customers
typically care more about avoiding losses than about making gains. This is true even
if the “gains” and “losses” amount to exactly the same choice. For example, if a public
health policy choice is framed as a gain (200 of 800 diseased people will be saved) or
as a loss (600 of 800 diseased people will die), most people respond differently, even
though the outcomes are identical.

Other experiments revealed that people put a much higher value on a product
they already own than one that they don’t own because giving up a product they
have feels like a loss. This behavior is part of the rationale behind the common
marketing strategy of offering products on a “free 30-day trial”—that customers are
much more willing to pay to “avoid losing” the trial product than they are willing to
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pay to acquire that same product initially. (Of course, other simpler explanations—
such as reassuring the customer of the quality of the product—can also explain such
guarantees.)

Another bias people exhibit is due to what is called mental accounting, in which
customers tend to evaluate gains and losses for different categories of goods differ-
ently because they have “mental budgets” for each category of goods. For example,
suppose you purchase a $1,000 watch and then immediately lose it. You might then
be reluctant to replace it because in some sense your “budget” for purchasing watches
has been exhausted. However, suppose you lost $1,000 in the stock market and you
did not own a watch at the time. Then you might be willing to buy a new $1,000
watch because there is no direct association between the $1,000 dollar loss and the
amount you might have “mentally allocated” to spend on a watch (for example, you
might account for this as “an investment loss” not a “expensive-watch loss”). Such
heuristic accounting again violates the rationality assumptions of classical consumer
behavior.

Kahneman and Tversky [278] developed what they termed prospect theory to ex-
plain such effects. Prospect theory differs from expected-utility theory in several
respects. For one, it handles the probabilities of outcomes differently, treating them
as “decision weights” that may or may not correspond to actual probabilities. In-
deed, prospect theory postulates that the subjective decision weights used by most
customers tend to overweigh small probabilities and underweigh high probabilities.
Prospect theory also uses the notion of “value” rather than “utility,” where value
is defined in terms of deviations from a reference point (the customer’s status quo
wealth). They postulate an S-shaped curve for the value function, which is convex
for losses below the reference point and concave for gains above the reference point.
Using this construct, Kahneman and Tversky [278] are able to model and explain
many observed deviations from rational behavior.

Do such findings mean that expected utility theory is “dead”? Not really. In
a gross sense, people do tend to behave in accordance with rationality assumptions.
However, what this behavioral theory shows quite clearly is that the axioms of rational
behavior, plausible as they are, do not apply uniformly and that there are situations
in which deviations from rational behavior are systematic and substantial.

The main consequence of these findings for RM practice is that one should always
understand the “environment” in which choices are made; the details of the buying
situation matter in terms of customers’ responses. How prices are presented, what
“reference point” the customer perceives, the framing of the choice decision, their
sense of “ownership” over the product—all can potentially influence their responses.
While many of the tactics used to influence these factors lie in the domain of general
marketing and are beyond the scope of this book, the general message that the choice
environment matters is nevertheless an important one for RM practitioners and re-
searchers to heed. Indeed, we expect these behavioral theories of demand to influence
RM practice more directly in the years ahead.



